Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 24(12): 2579-2589, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30053064

RESUMO

Background: The transmembrane heparan sulfate proteoglycan Syndecan-4 (Sdc4) plays an important role in the regulation of various inflammatory disorders. However, the involvement of Sdc4 in intestinal inflammation remains unknown. Therefore, we assessed the impact of Sdc4 deficiency on experimental colitis and epithelial wound healing in vitro and in vivo. Methods: Dextran sulfate sodium (DSS)-induced colitis was monitored in wild type and Sdc4-deficient (Sdc4-/-) mice by assessment of body weight, histology, inflammatory cellular infiltration, and colon length. Syndecan-4 expression was measured by immunohistochemistry, Western blot, and quantitative real-time PCR. Epithelial permeability was evaluated by Evans blue measurements, Western blot, and immunohistological analysis of tight junction protein expression. Impact of Sdc4 on epithelial wound healing was determined by scratch assay in vitro and by colonoscopy following mechanical wounding in vivo. Results: In Sdc4-/- mice, colitis-like symptoms including severe weight loss, shortened colon length, histological damage, and invasion of macrophages and granulocytes were markedly aggravated compared with wild type (WT) animals. Moreover, colonic epithelial permeability in Sdc4-/- mice was enhanced, while tight junction protein expression decreased. Furthermore, Sdc4-/- colonic epithelial cells had lower cell proliferation and migration rates which presented in vivo as a prolonged intestinal wound healing phenotype. Strikingly, in WT animals, Sdc4 expression was reduced during colitis and was elevated during recovery. Conclusions: The loss of Sdc4 aggravates the course of experimental colitis, potentially through impaired epithelial cell integrity and regeneration. In view of the development of current treatment approaches involving Sdc4 inhibition for inflammatory disorders like arthritis, particular caution should be taken in case of adverse gastrointestinal side-effects.


Assuntos
Colite/metabolismo , Colo/patologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Sindecana-4/metabolismo , Animais , Proliferação de Células , Colite/induzido quimicamente , Colonoscopia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Sindecana-4/genética , Junções Íntimas/metabolismo , Cicatrização
2.
J Clin Invest ; 128(5): 1852-1866, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29611822

RESUMO

Autoimmune diseases, such as psoriasis and arthritis, show a patchy distribution of inflammation despite systemic dysregulation of adaptive immunity. Thus, additional tissue-derived signals, such as danger-associated molecular patterns (DAMPs), are indispensable for manifestation of local inflammation. S100A8/S100A9 complexes are the most abundant DAMPs in many autoimmune diseases. However, regulatory mechanisms locally restricting DAMP activities are barely understood. We now unravel for the first time, to our knowledge, a mechanism of autoinhibition in mice and humans restricting S100-DAMP activity to local sites of inflammation. Combining protease degradation, pull-down assays, mass spectrometry, and targeted mutations, we identified specific peptide sequences within the second calcium-binding EF-hands triggering TLR4/MD2-dependent inflammation. These binding sites are free when S100A8/S100A9 heterodimers are released at sites of inflammation. Subsequently, S100A8/S100A9 activities are locally restricted by calcium-induced (S100A8/S100A9)2 tetramer formation hiding the TLR4/MD2-binding site within the tetramer interphase, thus preventing undesirable systemic effects. Loss of this autoinhibitory mechanism in vivo results in TNF-α-driven fatal inflammation, as shown by lack of tetramer formation in crossing S100A9-/- mice with 2 independent TNF-α-transgene mouse strains. Since S100A8/S100A9 is the most abundant DAMP in many inflammatory diseases, specifically blocking the TLR4-binding site of active S100 dimers may represent a promising approach for local suppression of inflammatory diseases, avoiding systemic side effects.


Assuntos
Alarminas/imunologia , Calgranulina A/imunologia , Calgranulina B/imunologia , Alarminas/química , Alarminas/genética , Animais , Artrite/genética , Artrite/imunologia , Artrite/patologia , Sítios de Ligação , Calgranulina A/química , Calgranulina A/genética , Calgranulina B/química , Calgranulina B/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/imunologia , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
3.
Sci Transl Med ; 8(330): 330ra35, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-27089204

RESUMO

Sclerostin, an inhibitor of the Wnt/ß-catenin pathway, has anti-anabolic effects on bone formation by negatively regulating osteoblast differentiation. Mutations in the human sclerostin gene (SOST) lead to sclerosteosis with progressive skeletal overgrowth, whereas sclerostin-deficient (Sost(-/-)) mice exhibit increased bone mass and strength. Therefore, antibody-mediated inhibition of sclerostin is currently being clinically evaluated for the treatment of postmenopausal osteoporosis in humans. We report that in chronic TNFα (tumor necrosis factor α)-dependent arthritis, fibroblast-like synoviocytes constitute a major source of sclerostin and that either the lack of sclerostin or its antibody-mediated inhibition leads to an acceleration of rheumatoid arthritis (RA)-like disease in human TNFα transgenic (hTNFtg) mice with enhanced pannus formation and joint destruction. Inhibition of sclerostin also failed to improve clinical signs and joint destruction in the partially TNFα-dependent glucose-6-phosphate isomerase-induced arthritis mouse model, but ameliorated disease severity in K/BxN serum transfer-induced arthritis mouse model, which is independent of TNF receptor signaling, thus suggesting a specific role for sclerostin in TNFα signaling. Sclerostin effectively blocked TNFα- but not interleukin-1-induced activation of p38, a key step in arthritis development, pointing to a previously unrealized protective role of sclerostin in TNF-mediated chronic inflammation. The possibility of anti-sclerostin antibody treatment worsening clinical RA outcome under chronic TNFα-dependent inflammatory conditions in mice means that caution should be taken both when considering such treatment for inflammatory bone loss in RA and when using anti-sclerostin antibodies in patients with TNFα-dependent comorbidities.


Assuntos
Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Glicoproteínas/antagonistas & inibidores , Inflamação/patologia , Articulações/patologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Idoso , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Marcadores Genéticos , Glucose-6-Fosfato Isomerase/metabolismo , Glicoproteínas/deficiência , Glicoproteínas/metabolismo , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-1/farmacologia , Articulações/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Nat Med ; 21(9): 1085-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26236992

RESUMO

Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-ß (TGF-ß) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone. Here we report a previously unknown direct role for myostatin in osteoclastogenesis and in the progressive loss of articular bone in rheumatoid arthritis (RA). We demonstrate that myostatin is highly expressed in the synovial tissues of RA subjects and of human tumor necrosis factor (TNF)-α transgenic (hTNFtg) mice, a model for human RA. Myostatin strongly accelerates receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast formation in vitro through transcription factor SMAD2-dependent regulation of nuclear factor of activated T-cells (NFATC1). Myostatin deficiency or antibody-mediated inhibition leads to an amelioration of arthritis severity in hTNFtg mice, chiefly reflected by less bone destruction. Consistent with these effects in hTNFtg mice, the lack of myostatin leads to increased grip strength and less bone erosion in the K/BxN serum-induced arthritis model in mice. The results strongly suggest that myostatin is a potent therapeutic target for interfering with osteoclast formation and joint destruction in RA.


Assuntos
Artrite Reumatoide/terapia , Diferenciação Celular , Miostatina/fisiologia , Osteoclastos/fisiologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Miostatina/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteogênese , Ligante RANK/farmacologia
5.
J Nucl Med ; 54(5): 748-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23516311

RESUMO

UNLABELLED: In patients with inflammatory bowel disease (IBD) and in murine IBD models, mucosal disease activity is routinely assessed by endoscopy and histologic evaluation. This information is valuable for monitoring treatment response, with mucosal healing being a major treatment goal. The aim of this study was to evaluate the translational potential of noninvasive (18)F-FDG PET/CT for the assessment of mucosal damage in murine dextran sodium sulfate (DSS) colitis and human IBD. METHODS: After induction of DSS colitis, (18)F-FDG uptake was serially assessed from colonic volumes of interest defined on PET/CT scans and intraindividually correlated to histologic findings and to infiltrating cell types. In addition, (18)F-FDG PET/CT scans of 25 Crohn disease patients were analyzed, and colonic (18)F-FDG uptake was correlated to endoscopically assessed damage. RESULTS: At days 4 and 7 after DSS induction, colonic (18)F-FDG uptake was significantly increased, with a distinct peak in the medial colon. (18)F-FDG uptake strongly correlated with histologic epithelial damage. Additionally, (18)F-FDG uptake increased in the bone marrow in the course of the disease, correlating with an increase in intestinal (18)F-FDG uptake. Histology and fluorescence-activated cell sorting analysis of the bone marrow of DSS mice revealed an increased number of immature neutrophils, whereas mucosal polymerase chain reaction suggested a correlation of (18)F-FDG uptake to T cell infiltration. In accordance with the results of (18)F-FDG PET/CT in DSS colitis, an increased (18)F-FDG uptake was found in 87% of deep mucosal ulcerations in IBD patients, whereas mild endoscopic lesions were detected only by (18)F-FDG PET/CT in about 50% of patients assessed. CONCLUSION: (18)F-FDG PET/CT is a noninvasive method for evaluation of both experimental colitis and Crohn disease patients and thereby offers promising translational potential.


Assuntos
Colite/diagnóstico por imagem , Fluordesoxiglucose F18 , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Colite/induzido quimicamente , Colite/imunologia , Sulfato de Dextrana/efeitos adversos , Endoscopia Gastrointestinal , Granulócitos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Ann Rheum Dis ; 71(6): 1004-11, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22258493

RESUMO

OBJECTIVE: To elucidate the mechanisms involved in cartilage damage in an experimental model of rheumatoid arthritis (RA) by specifically addressing the time course of extracellular matrix degradation and the contribution of cell-matrix interactions for initiation and perpetuation of this process. METHODS: The human tumour necrosis factor (TNF) transgenic (hTNFtg) mouse model of RA was used to analyse the time course of pannus attachment to the cartilage and cartilage destruction, respectively, and crossed hTNFtg mice with interleukin (IL)-1(-/-) animals were used to investigate the role of IL-1 on these TNF-induced mechanisms in vivo. In addition, an in vitro attachment assay using synovial fibroblasts (SFs) from hTNFtg mice and freshly isolated articular cartilage was used to determine the role of proteoglycan loss in attachment of SFs and the role of the transmembrane heparan sulfate proteoglycan syndecan-4. RESULTS: In vivo analyses of hTNFtg mice showed that proteoglycan loss induced by IL-1 precedes and constitutes an important prerequisite for these processes as, in hTNFtg mice, IL-1 deficiency protected from the loss of cartilage proteoglycans and almost completely prevented the attachment and subsequent invasion of inflamed synovial tissue into cartilage. In vitro studies confirmed that loss of cartilage proteoglycans is required for attachment of SFs and that syndecan-4 is prominently involved in SF attachment and activation. CONCLUSIONS: The results of this study suggest that the loss of cartilage proteoglycans is an early event in the course of destructive arthritis that facilitates the attachment of the inflamed synovial membrane and also initiates matrix degradation and inflammation through cell-matrix interactions.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Sinovite/imunologia , Sinovite/patologia , Animais , Artrite Reumatoide/metabolismo , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cartilagem/imunologia , Cartilagem/metabolismo , Cartilagem/patologia , Comunicação Celular/imunologia , Modelos Animais de Doenças , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Interleucina-1/imunologia , Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteoglicanas/metabolismo , Sindecana-4/metabolismo , Membrana Sinovial/metabolismo , Sinovite/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Immunity ; 27(2): 296-307, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17692539

RESUMO

Inflammatory diseases at epithelial borders develop from aberrant interactions between resident cells of the tissue and invading immunocytes. Here, we unraveled basic functions of epithelial cells and immune cells and the sequence of their interactions in an inflammatory skin disease. Ubiquitous deficiency of the IkappaBalpha protein (Ikba(Delta)(/Delta)) as well as concomitant deletion of Ikba specifically in keratinocytes and T cells (Ikba(K5Delta/K5Delta lckDelta/lckDelta)) resulted in an inflammatory skin phenotype that involved the epithelial compartment and depended on the presence of lymphocytes as well as tumor necrosis factor and lymphotoxin signaling. In contrast, mice with selective ablation of Ikba in keratinocytes or lymphocytes showed inflammation limited to the dermal compartment or a normal skin phenotype, respectively. Targeted deletion of RelA from epidermal keratinocytes completely rescued the inflammatory skin phenotype of Ikba(Delta)(/Delta) mice. This finding emphasizes the important role of aberrant NF-kappaB activation in both keratinocytes and lymphocytes in the development of the observed inflammatory skin changes.


Assuntos
Dermatite/imunologia , Proteínas I-kappa B/fisiologia , Queratinócitos/imunologia , Pele/imunologia , Linfócitos T/imunologia , Abscesso/genética , Abscesso/imunologia , Abscesso/patologia , Animais , Comunicação Celular , Dermatite/genética , Dermatite/patologia , Epiderme/imunologia , Epiderme/patologia , Deleção de Genes , Proteínas I-kappa B/genética , Queratinócitos/patologia , Queratinas/metabolismo , Linfotoxina-alfa/metabolismo , Camundongos , Camundongos Mutantes , Inibidor de NF-kappaB alfa , Pele/patologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
J Clin Invest ; 116(8): 2094-104, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16886058

RESUMO

Psoriasis is a common skin disease, the pathogenesis of which has not yet been resolved. In mice, epidermis-specific deletion of inhibitor of NF-kappaB (IkappaB) kinase 2 (IKK2) results in a skin phenotype that mimics human psoriasis in several aspects. Like psoriasis, this skin disease shows pronounced improvement when mice are treated with a TNF-neutralizing agent. We have found previously that this phenotype does not depend on the presence of alphabeta T lymphocytes. In order to evaluate contributions of other immune cell populations to the skin disease, we selectively eliminated macrophages and granulocytes from the skin of mice with epidermis-specific deletion of IKK2 (K14-Cre-IKK2fl/fl mice). Elimination of skin macrophages by subcutaneous injection of clodronate liposomes was accompanied by inhibition of granulocyte migration into the skin and resulted in a dramatic attenuation of psoriasis-like skin changes. The hyperproliferative, inflammatory skin disease in K14-Cre-IKK2fl/fl mice was a direct consequence of the presence of macrophages in the skin, as targeted deletion of CD18, which prevented accumulation of granulocytes but not macrophages, did not lead to major changes in the phenotype. Targeted deletion of the receptor for IFN-gamma revealed that the pathogenesis of the skin disease does not depend on classical IFN-gamma-mediated macrophage activation. Our results demonstrate that in mice epidermal keratinocytes can initiate a hyperproliferative, inflammatory, IFN-gamma-independent, psoriasis-like skin disease whose development requires essential contributions from skin macrophages but not from granulocytes or alphabeta T lymphocytes.


Assuntos
Inflamação/patologia , Macrófagos/patologia , Psoríase/patologia , Animais , Ácido Clodrônico/administração & dosagem , Ácido Clodrônico/farmacologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Inflamação/imunologia , Inflamação/fisiopatologia , Lipossomos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Knockout , Fenótipo , Psoríase/genética , Psoríase/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Linfócitos T/imunologia
9.
J Clin Invest ; 116(8): 2105-14, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16886059

RESUMO

The CD18 hypomorphic (CD18hypo) PL/J mouse model clinically resembling human psoriasis is characterized by reduced expression of the common chain of beta2 integrins (CD11/CD18) to only 2-16% of WT levels. Previously we found that this chronic psoriasiform skin inflammation also depends on the presence of CD4+ T cells. Herein we investigated the role of macrophages in this CD18hypo mouse model. Activated macrophages were significantly increased in lesional skin as well as in inflamed skin draining lymph nodes (DLNs) of affected CD18hypo mice and were identified as being an important source of TNF-alpha in vivo. Both depletion of macrophages and neutralization of TNF-alpha resulted in a significant alleviation of psoriasiform skin inflammation. As monocyte chemotactic protein 1 was enhanced in lesional skin of affected CD18hypo mice, we intradermally injected recombinant murine monocyte chemotactic protein-1 (rJE/MCP-1) alone or in combination with rTNF-alpha into the skin of healthy CD18hypo mice. Only simultaneous injection of rJE/MCP-1 and rTNF-alpha, but neither substance alone, resulted in the induction of psoriasiform skin inflammation around the injection sites with recruitment and activation of macrophages. Collectively, our data suggest that maintenance of psoriasiform skin inflammation critically depends on efficient recruitment and activation of macrophages with sufficient release of TNF-alpha.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos/imunologia , Psoríase/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD11/imunologia , Antígenos CD18/genética , Antígenos CD18/imunologia , Quimiocina CCL2/genética , Quimiocina CCL2/farmacologia , Modelos Animais de Doenças , Inflamação/genética , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos , Mutação , Fenótipo , Psoríase/genética , Psoríase/fisiopatologia , RNA Mensageiro/genética , Proteínas Recombinantes/farmacologia
10.
J Invest Dermatol ; 126(3): 614-20, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16397523

RESUMO

Skin inflammation is a complex process that involves interactions between various cell types residing in different skin compartments. Using mice with conditionally targeted I kappa B kinase 2 (IKK2) alleles, we have previously shown that epidermal keratinocytes can play a dominant role in the initiation of an inflammatory reaction. In order to investigate long-term consequences of IKK2 deletion in adult skin, we have generated mice with floxed IKK2 alleles in which expression of a Tamoxifen-inducible Cre recombinase construct is targeted to epidermal keratinocytes (K14-Cre-ER(T2)IKK2(fl/fl) mice). K14-Cre-ER(T2)IKK2(fl/fl) mice are born normally and do not show signs of a skin disease until the age of 6 months. Deletion of IKK2 can be observed after Tamoxifen application to the back skin or spontaneously, without Tamoxifen application, in mice older than 6 months. This deletion is accompanied by dramatic, localized skin changes that are characterized by invasion of inflammatory cells, hair follicle disruption, and pseudoepitheliomatous hyperplasia of the epidermis, but not by tumor formation. The hyperplastic epithelium shows increased phosphorylation of signal transducer and activator of transcription 3 and extracellular signal-regulated protein kinase 1/2, typical features of psoriatic epidermis. Our results identify a primary role for IKK2 in the development of skin inflammation and confirm its requirement for the maintenance of skin homeostasis.


Assuntos
Dermatite/etiologia , Deleção de Genes , Quinase I-kappa B/genética , Pele/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Dermatite/patologia , Folículo Piloso/patologia , Integrases/fisiologia , Queratina-14 , Queratinócitos/fisiologia , Queratinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/fisiologia , Pele/patologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...